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The evaluation of the effect of a transverse electric field on the characteristics of an 
EHD generator is an important problem of elec~ohydr~ynamic energy conversion D, 21. 

This subject was considered in [3, 41 on certain simplifying assumptions, such as; absence 
of compressibility and zero mobility of charged particles. This paper gives a qualitative 

analysis of a stationary one-dimensional electrohydrodynamic flow of a compressible 
gas in the presence of mobile charged particles in a varying electric field having longi- 
tudinal and transverse components. 

1, Fund&mental equation8 and integrals, Jet us consider the stationary 
motion of a compressible inviscid non-heat-conducting medium with a volume charge 
in an electric field in a plane channel of constant cross section with walls (y = -f-I h) 
of dielectric material. The electrodes are placed at the boot ends of the channel, We 
shall assume that the channel is narrow, the flow is directed along the x -axis, and the 
y-axis is normal to the flow. The equations will be averaged with respect to the g- 

coordinate on the assumption of symmetry of the flow about the channel axis. 
bet us estimate the extent of inhomogeneity of the electric field across the channel . 

We integrate equation curl E = 0 from y = 0 to y = h h 

E,(h)-E,(O):--+& 

0 

Normalizing the fields with respect to the longitudinal field J??, (0) at the channel 
axis and introducing dimensionless coordinates z* = x/L and y* = y/L, we obtain 

J&c (h) --E, (0) aEw h 
& (0) - =-LE, (0) 

Here &&, is the value of transverse field at the channel walls. For a very narrow chan- 
nel (h / L < 1) it can be assumed that the variation of the longitudinal field across 
the channel is small, even when E, varies along the latter. Generally, the dependence 

of Eli, on z can be determined by solving the problem of a two-dimensioanl flow in 
the channel. For the qualitative analysis we shall assume in the following that E,, is 
constant 

The averaging of equation div E = 0 over the cross section yields 

E’, = b (4) - &w l h (I.11 

Here the prime denotes differentiation with respect to X, and (q) is the mean density 
of the electric charge. 

The projection of Ohm’s law on the z-axis is of the form 

i,=q(u+&f (‘I.21 

Equation (1.2) has been written on the assumption that in the lengthwise direction the 
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effect of diffusion is insignificant. The form of Eq. (1.2) is not altered by the averaging, 

but true values of q and j, must be replaced in it by their mean values. 
The expression for the longitudinal electric force f, = qE, will appear in the pro- 

jection of the equation of hydrodynamic motion on the s-axis. By virtue of the assump- 

tion of constancy of the electric field across the channel this expression, after averaging, 

becomes (f,> = (q) E,. 
The energy equation contains terms of the form j,E, and jyElr. The mean value of 

j,E, is (j,> E,. 
To estimate j&, we examine the projection of Ohm’s law on the y-axis with cross- 

wise diffusion taken into account. The term &, vanishes at the channel axis (owing to 
the problem symmetry), and at its walls (walls y = $- h are dielectric). We assume the 

transverse current j, to be small in every cross section, i. e. that relationship qbE, - 
- Ddq / dy holds (D is the coefficient of diffusion). 

Hence term j,E, can be omitted from the energy equation. 
111 actual electrohydrodynamic installations the transverse current is exactly zero when 

mobility (j, = bqE,) is zero. FOI low mobility the assumption of smallness of iV may 

be considered to be in fair agreement with reality. In the case of an electrohydrodyna- 
mic accelerator it can be, apparently, assumed that in the presence of a considerable 

external longitudinal eiectric field E0 the motion of charged particles is directed mainly 
along the channel, hence the assumption of smallness of jp is valid. 

The equation of morion projected on the I/ -axis is of the form 

The maximum possible value of fy = qE, corresponds to those values of the elec- 

trical charge density and of field Byat which a discharge occurs in the gas. In actual 

installations the relarionship t 

\f !4 y d 
t 

-En2[3~< p 

where E, is the discharge field, is satisfied even for these values of 4 and By-Hence 
Ap / p < 1, and the pressure across the channel may be considered as constant. 

Equation div j = i,, after averaging, yields (j,) = const = j,,. In the following 

the signof averaging across a cross section will be omitted. 
The system of equations for this problem is of the form 

pu = m = const, mu’ + p’ = qE,, m (c,T -+ 0.5 22)’ = j,E, (1.3) 

P = @I’, j, = q (u + bE,) = jo, E,’ = 4nq - E,,l h 

Here p is the medium density, u the velocity component along the x -axis (u > 0), 
p the pressure, T the temperature, cP and Er’ are, respectively, the specific heat at con- 
stant pressure and the gas constant, and b is the mobility. To avoid any ambiguity we 
assume q > 0. The system of Eqs. (1.3) is a closed one. Constants m, j0 and E,, 
appearing in these equations are considered as given. It is not difficuIt to derive from 

Eqs. (1.3) the relationships 

u, = @_,M” (I( - u1) 
_&/’ 777 

qE,W (7 + 2) (u - ~2) 

mu(M”-1) ’ 2mu2 (iI42 - 1) 

Ul = (y - 1) bE,, u2 = (1 +yW) / (y + I), fw” = pu2 / ?(p (1.4) 
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Here M is the gasdynamic Mach number. Using the last of Eqs .(l. 3). we eliminate 
the charge density q from the equations of motion and energy, integrate these, and obtain 

m(c,T + 0.524~) =r E + ioSExdx 
0 

Using the equation of state we readily obtain from these relationships the expression 
for M8 

Ms= 
muEvw (a - u) 

4nh (y - 1) [jo (II -mu + Ex‘J/ 87~) + (0.5muL -8) Ew / 4nhj 

2. Determlnrtfon of flow region boundrrisc in the uE=-plrne. 
The last of Eqs. (1.3) together with Eq. (1.5) and the first of Eqs. (1.4) make possible 
the analysis of motion in the uE,-plane. To do this we use Eq. (1.5) for tracing curves 
MB = 0, ilP = 1 and W = 00 in the u&,.-plane. It is readily seen that the 

two straight lines u = 0 and u = a correspond in the r&,-plane to Ms = 0 . 
The Mach number becomes equal to unity or infinity along lines whose equations are 

of the form au* +cEx2 f2du +f = 0 (2.1) 
When w = 1, the coefficients ln Eq. (2.1) are 

m7(r+UB, 
‘= Snh(‘r-I) ’ 

710 
c=z, d = - 0.5mjo (y + I), f = y (iOn - 2) 

If parameters (j,, I& e, E,,, m, y, h) of the problem are such that the relation- 

ship EE yw I 4nh > joJJ is satisfied, then Eq. (2.1) ls that of a real ellipse. If, how- 
ever, that relationship does not hold. 

then for Eq. (2.1) to represent a real 
curve the relation a? > af must be 

satisfied, and, if this relation is not 
satisfied, a flow at such E gw will 
not be realized. the center of ellipse 

W= 1 lies at the point defined by 

the coordinates E, = 0 and u = a, 
and it intersects the axis of abscissas 

at points E,= + [8n (&Eyw / 4nh- 

- jJI) I jo I”,. 
Depending on the relationship 

Fig. 1 

between the problem parameters, the 

ellipse may have two points of inter- 
section with the axis of abscissas. be 

tangent to it, or not have any common points with it, i.e. the ellipse may lie above the 

axis of abscissas. The condition for absence of common points with the axis of abscissas 
is j,IT $ eEyu, j4nh (2.2) 

When kf2 = 00 , the coefficients in Eq. (2.1) are 
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a = mEyw /8nh, c== jo/8n, d= -mj,/2, f = j,JI -eEyw/4nh 

The curve w = KJ is an ellipse with its center at point 

E, = 0, u = 4nhjo I E,, = ay/(y - 1). 

It will be readily seen that the center of ellipse Ma = 00 lies above that of ellipse 

M’ = 1. Violation of condi- 
tion (2.2) indicates the presence 

of intersection points with the 

axis of abscissas. The intersec- 

tion of ellipse m = 00 with 
line u = a, on which lies the 
center of ellipse M2 = 1, 
occurs at points coinciding with 

the extremities of the horizon- 

tal semi-axis of the latter. 
The possible relative position 

of lines M2 = 0 W = 1 , 
and M2 = oo is shown in 

Fig. 2 Figs. 1 and 2. These lines divide 
the upper half-plane (u > 0) 

into a number of regions of which those with positive M2, as defined by Eq. (1.5). have 
a physical meaning, and are shown hatched in Figs.1 and d. 

The set of curves M2 = const represents a family of ellipses uninterruptedly filling 
the upper-half plane region between lines w = 0 and w = 00 , and having common 

points of intersection with lines u = 0 and u = a . The Mach number at the inter- 

section points of ellipses is defined by the slope of the integral curve entering that point, 

i.e. it is equal to the Mach number of an ellipse whose slope at the intersection is equal 
to the slope of the integral curve. 

8. Inve,tigrtion of tingular pofntr. t,et us examine the pattern of inte- 

gral curves of Eqs. (1.3) in the &.-plane. The last two of Eqs. (1.3) with the first of 
Eqs. (1.4) and Eq. (1.5) yield the relationship 

dzz T j0E, (u - m) (u - 1.4) 
dE, = 4~ (7 - 1) (u - ua) (au2 + cE,z+ 2du i_ j) 

(3. ,I ) 

Here 

u3 = 4nhj, ! E,, - bE,, au2 + cE,” +2du +f -= 

=r(M2 - 1) / 4nh (y - 1) 

We draw in the &E r -plane lines u = u1 = 

/E,, - bE,. 
Line u = u 

1 
intersects ellipse 2 - l) bEX and u = uq = 4xhio I _ 2 = 1 at points B and D ; its slope 

is dependent on the mobility b. When inequality (2.2) is satisfied, i. e. when ellipse 
M2 = 1 does not intersect the axis of abscissas, there may exist either two intersection 

points. or tangency, or there may be no points common to ellipse M” = 1 and line 

u = u,. If inequality (2.2) is not satisfied, there will always be two intersection points 
with point D, at which u > O,, having a physical meaning, Depending on the slope of 
line u = U, , point D may lie above, below, or on line ZL = a. 

tine u = ua passes through point F which is the center of ellipse MA = 00 , and 
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intersects line u = u1 at point G. 

Line u = a is horizontal, and on it lies the center of ellipse Ms = 1. It will be 
readily seen that this line is the integral curve of Eq. (3.1). 

Equation (3.1) has eight singular points : A and E , the intersection points of ellipse 
M2 5 1 with the coordinate axis (E, = 0); B and D , the intersection points of 
ellipse M2 = 1 with line u = u, ; F the point of intersection of line U = us with 
the axis of ordinates ; G , the intersection point of lines u = cc and u = us; and C 

and H, the intersection points of ellipse M2 = 1 with line u = a. If inequality (2.2) 
is not satisfied, i.e. when the ellipses intersect the axis of abscissas, points A and B lie 
in a region Uevoid of physical meaning. We introduce new variables t and z defined by 

u = u* + z, E, = ,?$,* f t. Here u* and E,* are the coordinates of a singular 

After linearization in the neighborhood of a singular point Eq. (3.1) becomes 
cot + do2 z’.c e 
a9 + b”z (3.2) 

For point A defined by coordinates 

J% (A) = 0, u (A) = a - [a2 - y (j,,lI - &Eyul / bd~)]‘/~ 

the coefficients in Eq. (3.2) will be 

co I johu (A) 
mJ!$, (r + 1) (4Xhjo / E,, - II (/I)) > O, do = 0, a3 = 0, b” = 1 

and 
(a0 - d”) 2 + 4 b”c” > 0, u”d” - b”c” < 0 

In accordance with the generally accepted classification [6] point A is a saddle. 
At point e 

E, (E) = 0, u (e) = cc + [a2 -r (jJI - eEyw / 4nh]‘/p 
the coefficients in (3.2) are 

co = johu (8) 
mEyw (7 + 1) (&hjo/ Egw - EL (IX)) 1 do = ‘9 a’ = ‘* bo = ’ 

The coefficient co is positive, if 4n hjo / E,, > u (e), i. e. when point e lies 
below point F (E (F) = 0, u (J’) = 4 rthjo / E yw) the center of ellipse M2 = 1. 

In that case 8 is a singular point of the saddle type. If however, 4ahjo / E yw < u (e), 
then c” < 0 , and point E is a center, 

It follows from the general theory of differential equations that the question whether 

point E is a center cannot be solved by using a criterion based on the analysis of only 

the linear terms in the numerator and the denominator of Eq, (3.1). An examination of 
the general pattern of integral curves shows that E 1s a focal point. 

Points F and E coincide when 4nhj, / E,, = u (e), and the velocity at that point 

is equal us. In this case the type of the singular point of Eq. (3.1) cannot be determined 
by methods of linear theory. We pass in Eq. (3.2) to the new variables z and t, and 
retain the quadratic terms in the denominator. We have 

z’ 5 - 

xt 
2 (2 + bt) ’ 

x=q7&/4nm(7+1) 

We look for a solution of this equation in the form of z = kt. For the determination 
of the slope of the characteristic direction in the neighborhood of point 8 we obtain the 
relationship 

k(k +b) = --x/z 
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This relationship is valid for z-+ 0 when k -. - co, i.e. there exists a characteris- 
tic direction with its tangent vertical at point e. 

The coordinates at points D and B are determined by the condition td = ur andw= 
= 1, and are, respectively 

E (D, B) = fi & [fP - (j,I-I - E E,, / 4 nh) / 6]“2, u (D, I?) = 

= (r - 1) bE (D, B) (3.3) 

8 = j(#/8r(- j Ey,m (r” - I) i Snh, f!l = rnBjo (y2 - 1) I 8 

The condition of existence of two intersection points in the physical region (u > 0) 
is 

p” > iOn - e E,, / 4nh 
If the ellipses intersect the axis of abscissas, i.e. when inequality (2.2) is not satisfied, 

only point D lies in the region u <> 0, The coefficients in Eq. (3.2) at point B and 
D are 

co = - (r - 1) b, d” = 1, d” = - r, b” = (a - U*) w 

Here u* is equal to either u (D) or u (B) , depending on the point under consideration 

0 =Ym(“I +&f&/j&*h(y -1) 
Here E* denotes either E (a) or E (D) 

(a0 - d")Z -+‘wc" = (y -+- 1)2 -4 (y -I) 5 (a - u*) 6.3 
If U* > a, this expression is positive, and 

&do - bOc0 = --r +(r - I) bw (a - u*) < 0, 

Le. the point is of the saddle type. Since inequality u* > a can only be satisfied for 

point L), hence this point, when it lies above or on line u = a , is a saddle (Fig. 1). 
Depending on the relationship between the parameters, B and I) can be either focal, 

nodal, or saddle points, when they lie below line u = a . It can be easily shown that 
point D ,even when it lies below line u = a, is always a saddle. Point B can be either 

a focus, or a node. 

Line u = us intersects the axis of coordinates (E, = 0) at a point along the coor- 

dinate u (F) = 4nhjo E,,. For point F the coefficients in Eq. (3.2) are 

co = - j,,“lz u (I;) i E,, (r - 1) Szr, do = 0, iz” = 6, b” = 1 

Here Q1 is the value of M2 - 1 (the left-hand side of Eq. (2.1)) at point F. The 
sign of coefficient u” depend on whether point F lies inside or outside ellipseM2 = 4. 
If ellipse &f2 = 1 does not intersect the axis of abscissas, i.e. when inequality (2.2)i.s 

satisfied, $2, is positive for points lying outside the ellipse, and negative for those inside 

it, If point F lies inside the ellipse, (a” - ~7’)~ + 4b”c” > 0, a”&’ - PC” (0 , 
and 8’ is a saddle point (Figs. 1, 2 and 3) ; if it lies outside ellipse M2 = 4 , and if 

b” > 4nhjo2 u (F) lE,, (r - 1) at, then point 8’ is a node, while in the case of 
converse inequality it is a focus. 

When point F lies inside ellipse &f % --IL? 1 (Q, > 0) intersecting the axis of abscis- 

sas, it is a saddle, and when it is outside such ellipse it is either a focus or a node. 

Lines 16 = ul, u = 74 and u = a intersect a point G (E, (G) = a i h (v - 1) 
u (G) = a) . The type of this point cannot be determined by methods of linear theory. 
We pass in Eq. (1.3) to variables z and t and retain in the numerator and the denomi- 
nator the dominant terms 
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z’=- 3 

Q z(z---(r--l)4 
2 + bt (3.4) 

Here 52s = joE, (G) hy / (Q’ - 1) & and 82, is the value of M2 --1 (in 

the left hand side of Eq. (2.1)) for point G. We shall determine the characteristic direc- 

tions in the neighborhood of point G. To do this we shall look for a solution of Eq. (3.4) 
in the form of z = kt. Substituting into Eq. (3.4). we obtain 

For y --, 0 we obtain one value k = 0 which corresponds to solution u = a, and 

another value, k - - b, i. e, the integral line is tangent to line u = us. 
The coordinates of singular points C and H are, respectively, 

E(C, H)= *pam(y-+l)u +z(J$- jJr)l” 

The coefficients in Eq. (3.2) are now c” = 0, d" = 1, a" = 1 and b” = 0. 
Points C and H are nodes, since the relationships 

(a” - do)2 + 4 b"c" > 0, a"# - b”c” > 0 

are satisfied. 
Lines Mg = 1, E, = 0, u = uI, u = ug and u = a divide the upper half- 

plane into a number of regions. The sign of du / &%‘,, i. e. the sign of the slope of inte- 

Fig. 3 

gral curves in each of these can be 

readily found from Eq. (3.1). Fur- 

thermore, the slope of integral curves 

along the enumerated lines are 

known. The integral curves inter- 
sect lines E, = 0 and u = U, at 

zero tangent. Line u = a is the 

integral curve of Eq. (3.1). Other 
integral curves can intersect it only 

at singular points C, G and H. 
Along lines u = us and &f2 = 1 
the tangents to integral lines are 

vertical. Having determined the 

slope of integral curves, the type 
of their singular points, and the 

derivatives along singular curves, it becomes possible to obtain in the uE,-plane a 

qualitative pattern of behavior of integral curves of the system of Eqs. (1.3). The posi- 
tion of ellipses .&f2 = 1 and &f2 = co, and of singular points and lines is given in 

Figs. 1 and 2. 

The case of zero mobility b of charged particles is of particular interest (Fig, 3). The 
pattern of integral curves represents a particular case of the preceding analysis. Line 

u = ~1 becomes the axis of abscissas, line u = us = ~~~j~~~~~ passing trough 
point 8’ becomes horizontal, and the singular points B, G and f) vanish. It immediately 
follows from Eq. (3.1) that in this case the pattern of integral curves is completely 
symmetric about the axis of ordinates (E, = 0), hence point a is necessarily a center. 

using Ohm’s law for expressing the electric charge density (r and substituting it into 
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the last of Eqs. (1.3). we obtain 
E,’ = 

-‘& (~3 - 4 

h (u + %c) 

This equation together with Eq. (3,1) defines the variation of flow parameters along 

the channel. The directions of velocity and of the electric field variation are indicated 
on the integral curves by arrows. 

Generally speaking, the motion along the channel (motion in the uE,-plane as indi- 

cated by arrows) can reach the Mach number equal to unity (arrows abutting against 
ellipse Ms = 1). The situation in which the integral curves do not pass through singu- 
lar points can only occur at the channel end., A continuous transition through the velo- 

city of sound at points other than singular is not possible. It was shown that points d 
and D are always singular points of the saddle type, at which transition from the subsonic 

to the supersonic mode, and vice versa, is generally possible. If point F lies outside 

ellipse M2 = 1, point E is also a singular saddle point, and such transitions at it are 

possible. Points C and H are always nodes. The direction of arrows on integral curves 

shows that transition through the velocity of sound does not occur there. When B and E 

are focal points, the integral curves approaching these will necessarily intersect line 
Ma = 1 at points other than B and e, and this corresponds to either the channel end 

or to a breakdown of the flow continuity. If either inequality (2.2) is not satisfied 

(Fig. 2), i. e. the ellipses intersect the axis of abscissa, or the mobility b is zero (Fig, 3), 
the transition through the velocity of sound is only possible at point A. If however the 
intersection of ellipses with the axis of abscissas occurs in the presence of zero mobility, 
a transition through the velocity of sound is nowhere possible. 

The relationship u = - bE, is valid along line OK shown in Figs.1 and 2. To the 
left of this line the density of the electric current is negative (jO < 0), while to the 

right of it, it is positive (j,, > U). The region comprised between line OK and the axis 

of ordinates corresponds to a generating process (j,E, ( 0. j. > 0), while the region 

of positive E, , and that to the left of line OK correspond to an acceleration mode 

(j&,.0). The point at which velocity u = - bE, is reached must correspond to 

the channel end, since from the last but one of Eqs. (1.3) follows that at this point 

4 = or3 (u’, M’ and &” also become infinite). 

We note that when E,, tends to zero, ellipses M” = 1 and M2 = 00 degenerate 
into parabolas, and the pattern of integral curves is then of the form given in [S]. 

The theoretical problem of gas flow under conditions of zero mobility was considered 

in [4, 71. The conclusions reached here as regards the solution symmetry about the axis 

of ordinates (E x = O), the boundedness of the flow, and the character of the velocity 
and of the electric field variation along the channel are in agreement with the results 

cited in [4]. 
In concluding, the author expresses her thanks to G. A. Liubimov and A. E. Iakubenko 

for discussing this problem. 
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We consider the stability of the Couette flow between two rotating cylinders in the limit- 
ing case when the radius of the inner cylinder rl tends to zero, and its angular velocity 
52, increases to infinity in such a manner that 81r12 = k, = const. 

The dependence of the critical Reynolds number R, on the wave number a is repre- 
sented by a neutral curve. The Couette flow loses its stability when the Reynolds num- 

ber becomes supercritical and a = 3. The eigenvector of the liiearized problem is 

computed and used to construct an approximate Taylor vortex. 

1. Statement of the problem. A viscous incompressible fluid of unit den- 
sity and coefficient of viscosity v fills the space between two concentric cylinders of 

radii r, and r’2 rotating with angular velocities Jzl and 522. Letting r, tend to zero and 

Q1 to infinity in such a manner that Qlr12 = kc,, we arrive at the limiting flow created 

by a vortex line of intensity Fc, distributed along the axis of the cylinder whose radius is 

rz. Below we study the stablity of this flow. 
In Sect. 2 we show that the problem will indeed reach its limiting value when rX + 0. 

We shall require that there is no loss of fluid across the transverse section. Then the 
exact solution v, of the Navier-Stokes equations satisfying the no-slip conditions at the 

boundaries represents a Couette flow 

Uor = uoz = 0, vgo = ar + I/ r, a=k,/k,-- 1, Ii, = R,r,S (1.1) 

where P, 8 and z denote the cylindrical coordinated. 
We shall investigate the stability of the flow (1.1) towards rotationally symmetric 

perturbations 2n / a-periodic in 5. Let us represent the perturbed flow by 

V’ (r, 2, t) = vo(r) + eat v(r, 2) W) 

Inserting (1.2) into the Navier-Stokes equations and neglecting the quadratic terms, 


